

| 第1章 | 結晶学の基礎 |  |
|-----|--------|--|
|     |        |  |











| を作り出す操作<br>対称要素: 1つあるいは複数の対称操作を幾何学的に表現            |                              |                               |  |  |  |
|---------------------------------------------------|------------------------------|-------------------------------|--|--|--|
| Symmetry operations                               | Symmetry representation      | Symmetry element              |  |  |  |
| 回転 Rotation                                       | Axis(line)                   | 回転軸 Rotation axis             |  |  |  |
| 反転 Inversion                                      | Point(center)                | 対称心 Center of inversion       |  |  |  |
| 鏡映 Reflection                                     | Plane                        | 鏡面 Mirror plane               |  |  |  |
| 並進 Tranlation                                     | Vector                       | 並進ベクトル Tranlation vector      |  |  |  |
| 複合対称要素<br>回反軸: 回転+反軟<br>らせん軸: 回転+並進<br>映進面: 鏡面+並進 |                              | 分類                            |  |  |  |
| Pi<br>In                                          | roper対称要素 -<br>nproper対称要素 - | 回転軸、並進、らせん軸<br>対称心、回反軸、鏡面、映進面 |  |  |  |
| 無                                                 | ŧ限対称要素 –<br>ī限対称要素 –         | 並進、らせん軸、映進面<br>回転軸、対称心、鏡面、回反軸 |  |  |  |

対称操作と対称要素

| <b>有限対称</b><br>結晶に許されるジ<br>回転軸: 1、2<br>回反軸: 1、2<br>鏡面: m<br>対称心: 1 | <b>、要素</b> –<br><sup>有限対称要素</sup><br>2、3、4、6回の回<br>2, 3, 4, 6 | 回転軸、文<br>転軸だけ(n回回 | 寸 <b>称心、鏡</b> 面<br>回転軸:360/n)     | 面、回反軸 —             |
|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------|-----------------------------------|---------------------|
| Rotation                                                           | Rotation axis                                                 |                   | Inversion axis                    |                     |
| angle                                                              | International symbol                                          | Graphical symbol  | International symbol              | Graphical<br>symbol |
| 360°                                                               | 1                                                             |                   | ī                                 | 0                   |
| 180°                                                               | 2                                                             |                   | $\overline{2} = m$                | — or —              |
| 120°                                                               | 3                                                             |                   | $\overline{3} = 3 + \overline{1}$ | Δ                   |
| 90°                                                                | 4                                                             |                   | 4                                 |                     |
| 60°                                                                | 6                                                             |                   | $\overline{6} = 3 + m \perp 3$    | •                   |
| これらの記号は、                                                           | . Internationa Ta                                             | bles for Crystal  | lographyで頻繁                       | こ使用される              |





|                                                                                                                                                 | 結晶系                            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| 結晶学的対称要素として有限対称要素を考慮する場合<br><u>点</u> 群 - 10個の有限対称要素(1, 2, 3, 4, 6, $\overline{1}, \overline{2} = m, \overline{3}, \overline{4}, \overline{6}$ ) |                                |  |  |  |  |
| 結晶学的な軸の選択<br>一般に、回転軸か鏡面に垂直な軸                                                                                                                    |                                |  |  |  |  |
| 3次元的に可能な結晶学的な点群<br>7つの結晶系                                                                                                                       |                                |  |  |  |  |
| 結晶系                                                                                                                                             | 対称要素あるいは対称要素の組み合わせ             |  |  |  |  |
| 三斜晶系                                                                                                                                            | 無あるいは対称心                       |  |  |  |  |
| 単斜晶系                                                                                                                                            | 唯一の2回回転軸あるいは唯一の鏡面              |  |  |  |  |
| 斜方晶系                                                                                                                                            | 3つの互いに直交する2回回転軸か2回回反軸          |  |  |  |  |
| 三方晶系                                                                                                                                            | 唯一の3回回転軸か3回回反軸                 |  |  |  |  |
| 正方晶系                                                                                                                                            | 正方晶系 唯一の4回回転軸か4回回反軸            |  |  |  |  |
| 六方晶系                                                                                                                                            | 唯一の6回回転軸か6回回反軸                 |  |  |  |  |
| 立方晶系                                                                                                                                            | 立方体の4つの体対角線方向に沿う3つの4回回転軸か4回回反軸 |  |  |  |  |
|                                                                                                                                                 |                                |  |  |  |  |

| 結晶学的点群 – その1 (3つの結晶学的軸を考慮した点群) |                       |               |                    |                 |                  |       |                                              |  |
|--------------------------------|-----------------------|---------------|--------------------|-----------------|------------------|-------|----------------------------------------------|--|
| 日不                             | 第1ポジション               | ν(主軸)         | (主軸) 第2ポジション       |                 | 第3ポジション          |       | ► 374                                        |  |
| 品糸                             | 要素                    | 軸             | 要素                 | 軸               | 要素               | 軸     | <b>□</b> □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ |  |
| 三斜                             | 1,1                   | any           | 無                  |                 | 無                |       | 1,1                                          |  |
| 単斜                             | 2, m, 2/m             | Y             | 無                  |                 | 無                |       | 2, m, 2/m                                    |  |
| 斜方                             | 2, m                  | х             | 2, m               | Y               | 2, m             | Z     | 222、mm2、<br>mmm                              |  |
| 正方                             | 4, 4, 4/m             | Z             | <b>無、</b> 2、m      | х               | <b>無、</b> 2、m    | 低対角   | 4, 4, 4/m, 422,<br>4mm, 42m,<br>4/mmm        |  |
| 三方                             | 3,3                   | Z             | <b>無、</b> 2、m      | X               | 無                |       | $3, \overline{3}, 32, \\3m, \overline{3m}$   |  |
| 六方                             | 6, <del>6</del> , 6/m | Z             | <b>無、</b> 2、m      | х               | <b>無、</b> 2、m    | 低対角   | 6, 6, 6/m, 622,<br>6mm, 62m,<br>6/mmm        |  |
| 立方                             | 2, m, 4, 4            | Х             | 3, 3               | 体対角             | <b>無、</b> 2、m    | 面対角   | 2 <u>3</u> , m3, 432,<br>43m, m3m            |  |
| 例 4/                           | /mmm ⇒ 主<br>行)、       | 鼬が4回[<br>低対角線 | 回転軸(Z)、主<br>良方向に垂直 | 軸に垂直な<br>な鏡面(Z軸 | は鏡面(m)、<br>加に平行) | X軸に垂直 | 重な鏡面(Z軸に平                                    |  |

|    | 11 | Ν | N⊥m | N⊥ 2 | N    m | N    m | N⊥m  |
|----|----|---|-----|------|--------|--------|------|
| 三斜 | 1  | 1 |     |      |        |        |      |
| 単斜 | 2  | m | 2/m |      |        |        |      |
| 斜方 |    |   |     | 222  | mm2    |        | mmn  |
| 正方 | 4  | 4 | 4/m | 422  | 4mm    | 4m2    | 4/mm |
| 三方 | 3  | 3 |     | 32   | 3m     | 3m     |      |
| 六方 | 6  | 6 | 6/m | 622  | 6mm    | 6m2    | 6/mm |
| 立方 | 23 |   | m3  | 432  |        | 43m    | m3m  |

|   | 単位胞の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | の選び         | 「方 - 規則1                                                                   |           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|-----------|
| 規 | 1月1 - 結晶系の決め                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 方           |                                                                            |           |
|   | 晶系                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 単位胞の<br>対称性 | 格子定数に対する制限                                                                 |           |
|   | 三斜晶系(triclinic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           | $a \neq b \neq c, \ \alpha \neq \beta \neq \gamma \neq 90^{\circ}$         |           |
|   | 単斜晶系(monoclinic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/m         | $a \neq b \neq c, \ \alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$ |           |
|   | 斜方晶系(orthorhombic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mmm         | $a \neq b \neq c, \ \alpha = \beta = \gamma = 90^{\circ}$                  |           |
|   | 正方晶系(tetragonal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/mmm       | $a=b\neq c, \ \alpha=\beta=\gamma=90^{\circ}$                              |           |
|   | 六方晶系(hexagonal)と<br>三方晶系(trigonal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/mmm       | $a=b\neq c, \ \alpha=\beta=90^{\circ}, \ \gamma=120^{\circ}$               |           |
|   | 立方晶系(cubic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m3m         | $a=b=c, \ \alpha=\beta=\gamma=90^{\circ}$                                  |           |
| • | $a_1$ $b_1$ $b_3$ $a_3$ $a_3$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_4$ $a_5$ $a_4$ $a_5$ $a_5$ $a_4$ |             | いずれの格子も2回回転軸を<br>規則1だけからは単位胞の選<br>きない                                      | もつ<br>択はで |

|       | 単位胞の選び方                                                                   | - 規則2                                                      |
|-------|---------------------------------------------------------------------------|------------------------------------------------------------|
| 晶系    | 標準設定(第1設定)                                                                | 第2設定                                                       |
| 三斜    | 結晶軸間の角度はできるだけ90°に<br>近くとる(≧90°)                                           | ≦90°の角度も許す                                                 |
| 単斜    | Y軸は唯一の2回回転軸と平行(あ<br>るいは鏡面に垂直)にとり、角度β<br>はできるだけ90°に近くとる(≧90°)              | 標準設定と同じであるが、Y軸の代<br>わりにZ軸、βの代わりにアも許され<br>る                 |
| 斜方    | 結晶軸は3つの相互に直交する2回<br>回転軸と平行(あるいは鏡面とに垂<br>直)にとる                             | 無                                                          |
| 正方    | Z軸は常に唯一の4回回転(回反)軸<br>と平行にとる.X、Y軸はZ軸と90°に、<br>また互いに90°になるようにとる             | 無                                                          |
| 六方と三方 | Z軸は常に唯一の3回あるいは6回<br>回転(回反)軸と平行にとる. X、Y軸<br>はZ軸と90℃に、また互いに120℃にな<br>るようにとる | 三方晶系では3回回転軸は単純単位<br>格子の体対角線方向に沿ってとり、<br>a=b=c、α=β=γ≠90°とする |
| 立方    | 結晶軸は常に3つの相互に直交す<br>る2回又は4回回転軸とにとり、4つ<br>の3回回転(回反)軸は立方体の体<br>対角線と平行にする     | 無                                                          |









| ブラベ格子(Bravais lattice)                               |                 |                   |   |  |  |  |  |
|------------------------------------------------------|-----------------|-------------------|---|--|--|--|--|
| 6種の晶系(六方と三方を1種類と考える)と5つの格子タイプ(P、L<br>F、C、R)の組み合わせを考慮 |                 |                   |   |  |  |  |  |
|                                                      |                 |                   |   |  |  |  |  |
| 144                                                  | 種類の格子タイプ<br>ブラ・ | が結晶学的に許される<br>べ格子 | 3 |  |  |  |  |
|                                                      | 晶系              | 格子の型              |   |  |  |  |  |
|                                                      | 立方晶系            | P, I, F           |   |  |  |  |  |
|                                                      | 正方晶系            | P, I              |   |  |  |  |  |
|                                                      | 斜方晶系            | P, C, I, F        |   |  |  |  |  |
|                                                      | 六方晶系            | Р                 |   |  |  |  |  |
|                                                      | 三方晶系            | R(P)              |   |  |  |  |  |
|                                                      | 単斜晶系            | P, C              |   |  |  |  |  |
|                                                      | 三斜晶系            | Р                 | ] |  |  |  |  |
|                                                      |                 |                   |   |  |  |  |  |



























| 座標変換(数                                                                                                                                                                                                                                                                                                                                                                                                                                             | 学的表現)                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z軸の回転                                                                                                                                                                                                                                                                                                                                                                                                                                              | 並進                                                                                                                                                                                                                                                                                                                           |
| $\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0\\ \sin\varphi & \cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$                                                                                                                                                                                                                                                    | $\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = \begin{pmatrix} x\\ y\\ z \end{pmatrix} + \begin{pmatrix} t_x\\ t_y\\ t_z \end{pmatrix}$                                                                                                                                                                                       |
| 反転                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                              |
| $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$                                                                                                                                                                                                                                                                                    | $\mathbf{\mathcal{WE}}, 5 \mathbf{\mathcal{E}} \mathbf{\lambda}$ $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X' = RX + T                                                                                                                                                                                                                                                                                                                  |
| $(\mathbf{r}')$ $(-1, 0, 0)$ $(\cos \alpha - \sin \alpha, 0)$ $(\mathbf{r})$                                                                                                                                                                                                                                                                                                                                                                       | Į                                                                                                                                                                                                                                                                                                                            |
| $ \begin{vmatrix} x \\ y' \\ z' \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{vmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & -1 \end{vmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} $ $ = \begin{pmatrix} -\cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & -\cos \varphi & 0 \\ 0 & 0 & -1 \end{vmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} $ | $ \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} $                                                                     |

| 問 空                                                          | 2間群(                                          | C2/mlこ                                           | おいて次                                      | 演習<br>の座標を持つ原子について下記の間に答えよ。                                                                                                                                                                                                |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atom<br>Atom1<br>Atom2<br>Atom3<br>1) x, y, z;<br>(0,0,0); + | x<br>0.15<br>0.25<br>2) x, y, z, 2<br>(1/2,1/ | y<br>0.0<br>0.11<br>0.25<br>z; 3) x̄, y,<br>2,0) | z<br>0.33<br>0.5<br>0.25<br>z; 4) x, y, z | <ul> <li>a) それぞれの原子について、単位格子中にある全ての原子座<br/>標を記せ。</li> <li>b) 等しい座標をもつ原子を見出せ。</li> <li>c) 独立な原子座標の各々に対する特殊位置の多重度とり127<br/>記号を示せ。</li> <li>d) 可能であれば、独立な原子座標はどの対称要素に属するか。</li> <li>e) 元の3つの原子座標の内、一般等価位置を占めるはどれか。</li> </ul> |

| contraites No. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C 2/m                                                      | costmany No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 194 P6dmme                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |
| Garrier should be stream out an analy state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHAF-MR                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | Contraction of these works many of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 10, 101                                                                                                                            |
| Autor Continent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Belletine reading                                          | Noninan Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Belleten en linne                                                                                                                    |
| a l diver diate distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Second Contraction                                         | State Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 100                                                                                                                                |
| A CONTRACT OF ALL AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AUX 8 1 24                                                 | BOULD BARY SHREEKS SUPERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with t = 3a                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 2-15 30<br>100 2 2 3<br>100 2 2 3                      | HLALIN TANFAN TANAN<br>TANT TANAN (ALINA<br>(TANT) TANAN<br>(TANAN TANAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 008 ( 1 = 3e                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Iprial a story play                                        | 00.55.53 057.5+s.575 10.5+s.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |
| * I = +3.1 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ex 111s undisee                                            | (D) (add) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |
| • • E = #A1 +54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er sets undigen                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Territal in shreet, play                                                                                                             |
| • a I 0.0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to tett radioe                                             | 10 4 m. 1244 1244 1411 1414 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or with conditions                                                                                                                   |
| • r t Ant Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Add _ (0 = 2 e                                             | 11.0.2** 5.0.2*1 32.0.5 12.0.1<br>8.0.2 30.0.2*1 0.30.3*1 0.7.7*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                      |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 441.0-24                                                   | ILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | And A start the line                                                                                                                 |
| 7 - 3- 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to one operation.                                          | and make solution the stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | http:/                                                                                                                               |
| 5 5 3/4 BLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | an ere contraction                                         | H 1 1 1 100 0.00 1.00 0.00 0.01 0.13<br>100 0.00 1.00 1.00 0.01 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (444) (1.0 + 104                                                                                                                     |
| I a live man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in the public                                              | a s well him into and him had a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A DECEMBER OF A DECEMBER OF                                                                                                          |
| Researce of special projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104020011000                                               | # g .200 1000 010 100 100 010 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A40 (1=1+                                                                                                                            |
| Nong (MG) (2010) (2010)<br>472-0, 162-16 (2010)<br>100-0 (2010)<br>100-0 (2010)<br>100-0 (2010)<br>100-0 (2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Along 2010 p.1<br>2're - X'rin<br>Dign a T <sub>2</sub> /5 | + ( )+. Wa literi kiz xizra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} a_{0,0} & , \ b_{1,0} = p_{0,0} \\ a_{1,0} & , \ b_{1,0} = p_{0,0} \\ a_{1,0} & , \ b_{1,0} = p_{0,0} \end{array}$ |
| Matter an interption and an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | a s in our near second and and in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | He chains                                                                                                                            |
| The part of the second |                                                            | 2 6 5+2 142 414 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | And Junio                                                                                                                            |
| THE DEPTH OF DEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | A LEAST THE LEAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an k-d-state                                                                                                                         |
| 12(F120+11F2) 1.2.(1.0++1.00)<br>TEFT_A10F1_F1 1.2.(2.0++1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | a a first has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALL TARES                                                                                                                            |
| INFERIOR OF LOW TO A THE SHELD BE AND THE SHELD BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            | 7 - 1- 100 00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                      |
| Mailed beautiful allocate of heat late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | Francisco de contra c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |
| B. Distribution with Residue a state of the Data in the second state of the Second    | 630e1                                                      | Along DOLL prise on Along DOLL plays<br>Along DOLL plays | Along (2.01 p 2++<br>x++1 y y - ic                                                                                                   |
| <ul> <li>Diffuse Diffuse Diffuse Diffuse Disce Dis<br/>Diffuse Option (partice)</li> <li>Diffuse Option (partice)</li> <li>Diffuse (defuse)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an (Differen (Differe                                      | Konned or proving repri-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organ at 11,14,0                                                                                                                     |

| Atom | x      | у       | z      |
|------|--------|---------|--------|
| Bal  | 0      | 0       | 0.25   |
| Ba2  | 0.3333 | 0.6667  | 0.9110 |
| Ni   | 0      | 0       | 0      |
| Sb   | 0.3333 | 0.6667  | 0.1510 |
| 01   | 0.4816 | -0.0368 | 0.25   |
| 02   | 0.1685 | 0.3370  | 0.4169 |





















| 演習                  |
|---------------------|
| 問 逆格子ベクトルの性質2を照明せよ。 |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |



| 空間格子                                                                             |                                                                                                               |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $a^* = \frac{bc\sin\alpha}{V},$                                                  | $a = \frac{b^* c^* \sin \alpha^*}{V^*}$                                                                       |
| $b^* = \frac{ca\sin\beta}{V},$                                                   | $b = \frac{c^* a^* \sin \beta^*}{V^*}$                                                                        |
| $c^* = \frac{ab\sin\gamma}{V},$                                                  | $c = \frac{a * b * \sin \gamma *}{V *}$                                                                       |
| $\cos\alpha^* = \frac{(\cos\beta\cos\gamma - \cos\alpha)}{\sin\beta\sin\gamma}$  | $\frac{\alpha}{2},  \cos\alpha = \frac{(\cos\beta^*\cos\gamma^* - \cos\alpha^*)}{\sin\beta^*\sin\gamma^*}$    |
| $\cos\alpha^* = \frac{(\cos\beta\cos\gamma - \cos\alpha)}{\sin\beta\sin\gamma}$  | $\frac{\alpha}{1},  \cos\alpha = \frac{(\cos\beta * \cos\gamma * - \cos\alpha *)}{\sin\beta * \sin\gamma *}$  |
| $\cos\alpha^* = \frac{(\cos\beta\cos\gamma - \cos\alpha)}{\sin\beta\sin\gamma}$  | $\frac{\alpha}{2},  \cos\alpha = \frac{(\cos\beta * \cos\gamma * - \cos\alpha *)}{\sin\beta * \sin\gamma *}$  |
| $\cos\beta^* = \frac{(\cos\gamma\cos\alpha - \cos\gamma)}{\sin\gamma\sin\alpha}$ | $\frac{\beta}{\beta},  \cos\beta = \frac{(\cos\gamma^*\cos\alpha^* - \cos\beta^*)}{\sin\gamma^*\sin\alpha^*}$ |
| $\cos\gamma^* = \frac{(\cos\alpha\cos\beta - \cos\gamma)}{\sin\gamma\sin\beta}$  | $(\gamma)$ , $\cos \gamma = \frac{(\cos \alpha * \cos \beta * - \cos \gamma *)}{\sin \gamma * \sin \beta *}$  |
| $V = abc(1 - \cos^2 \alpha - \cos^2 \beta)$                                      | $-\cos^2\gamma + 2\cos\alpha\cos\beta\cos\lambda)^{1/2}$                                                      |
| $V^* = a^* b^* c^* (1 - \cos^2 \alpha^* -$                                       | $-\cos^2\beta^* - \cos^2\gamma^* + 2\cos\alpha^* \cos\beta^* \cos\lambda^*)^{1/2} = 1/V$                      |























| 粉末パターンにおけるビ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ーク強度                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $I_{hkl} = K \times p_{hkl} \times L_{\theta} \times P_{\theta} \times A_{\theta} \times T_{hkl} \times P_{\theta} \times A_{\theta} \times T_{hkl} \times P_{\theta} \times $ | $\left  E_{hkl} \times \left  F_{hkl} \right ^2 \right $ |
| K : scale factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 尺度因子                                                     |
| $p_{hkl}$ : multiplicity factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 多重因子                                                     |
| $L_{\theta}$ : Lorentz multiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ローレンツ因子                                                  |
| $P_{\theta}$ : polarization factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 分極因子                                                     |
| $A_{\theta}$ : absorption mulitiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 吸収補正                                                     |
| $T_{hkl}$ : preferred orientation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 配向因子                                                     |
| $E_{hkl}$ : extinction nultiplier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 消衰因子                                                     |
| $F_{hkl}$ : structure factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 構造因子                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |



| シート                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |       |       |       |       |         |        |          |      |       |      |      |      |     |     |     |      |       |      |      |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------|-------|-------|-------|---------|--------|----------|------|-------|------|------|------|-----|-----|-----|------|-------|------|------|---------|
| P 生 凶 丁      A      A      A      A      A      C      A      C      A      C      A      C      C      A      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C      C |       |              |       |       |       |       |         |        | -        | 2    | Ŧ     | τĒ   | F I  | 7    |     |     |     |      |       |      |      |         |
| 点群と反射の型で分類した粉末法における多重因子 前日にの「「」」」」 前日にの「」」」」 前日にの「」」」 前日にの「」」」 前日にの「」」」」 前日にの「」」」 前日にの「」」 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>9</th> <th>里</th> <th>! L</th> <th>∕</th> <th>Т</th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |              |       |       |       |       |         |        | -        | 9    | 里     | ! L  | ∕    | Т    | •   |     |     |      |       |      |      |         |
| A 詳と反射の型で分類した粉末法における多重因子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |       |       |       |       |         |        | _        |      |       |      |      | -    |     |     |     |      |       |      |      |         |
| Image: Image of the set                        | 占江    | 鮮と反          | 射(    | の型    | で     | 分≭    | 百Ι.     | t-*    | 分末       | 法    | にお    | :1+  | るま   | ,重   | 因-  | 7   |     |      |       |      |      |         |
| DB         I         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.001 | " <u>~ ~</u> | 1     | -1    |       | 2     | <u></u> | m - 1. | 2/m      | 2/m  | 222   | mm2  |      | 4    | -4  | 4/m | 422 | 4000 | -42 7 | -42m | 4/md | 3(bev   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 00           | 1     | 2     | 2     | 1     | 1       | 2      | 2        | 2    | 2     | 1    | 2    | 1    | 2   | 2   | 2   | 1    | 2     | 1    | 2    | 1       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | OkD          | 1     | 2     | 1     | 2     | 2       | 1      | 2        | 2    | 2     | 2    | 2    | 4    | 4   | 4   | 4   | 4    | 4     | 4    | 4    | 3       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Okl          | 1     | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 2    | 4    | 4    | 4   | 8   | 8   | 4    | 8     | 8    | 8    | 3       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | h00          | 1     | 2     | 2     | 2     | 1       | 1      | 2        | 2    | 2     | 2    | 2    | 4    | 4   | 4   | 4   | 4    | 4     | 4    | 4    | 3       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | hOl          | 1     | 2     | 2     | 2     | 1       | 2      | 2        | 4    | 4     | 2    | 4    | 4    | 4   | 8   | 8   | 4    | 8     | 4    | 8    | 3       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | hk0          | 1     | 2     | 2     | 2     | 2       | 1      | 4        | 2    | 4     | 4    | 4    | 4    | 4   | 4   | 8   | 8    | 8     | 8    | 8    | 3       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | hkl          | 1     | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 4    | 8    | 4    | 4   | 8   | 8   | 8    | 8     | 8    | 16   | 3       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Okk          |       | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 2    | 4    | 4    | 4   | 8   | 8   | 4    | 8     | 8    | 8    | 3       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | hhU          |       | 2     | 2     | 2     | 2       | 1      | 4        | 2    | 4     | 4    | 4    | 4    | 4   | 4   | 4   | 4    | 4     | 4    | 4    | 3       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | nni          |       | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 4    | 8    | 4    | 4   | 8   | 8   | 4    | 4     | 8    | 8    | 3       |
| Insp.         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <th></th> <th>hkk</th> <th>1</th> <th>2</th> <th>2</th> <th>2</th> <th>2</th> <th>2</th> <th><u> </u></th> <th>4</th> <th>4</th> <th> 2</th> <th>4</th> <th>4</th> <th>4</th> <th>8</th> <th>8</th> <th>4</th> <th>0</th> <th>4</th> <th>16</th> <th>3</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | hkk          | 1     | 2     | 2     | 2     | 2       | 2      | <u> </u> | 4    | 4     | 2    | 4    | 4    | 4   | 8   | 8   | 4    | 0     | 4    | 16   | 3       |
| Intr         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | hkh          | 1     | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 4    | 8    | 4    | 4   | 8   | 8   | 8    | 8     | 8    | 16   | 3       |
| 3(rhc         3(rh         3(rh)         3(rh)         3(rh)         3(rh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | hhh          | 1     | 2     | 2     | 2     | 2       | 2      | 4        | 4    | 4     | 4    | 8    | 4    | 4   | 8   | 8   | 4    | 4     | 8    | 8    | 3       |
| 3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rhd=3(rh))))))))))))))))))))))))))))))))))          3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |              |       |       | -     |       |         |        |          |      |       |      |      |      | - 1 |     |     |      |       |      |      |         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |              | 3(rho | -3(he | -3(rh | 32(32 | 32(31   | 32(rh  | 3m(3     | 3m(3 | 3m(rl | -3m( | -3m( | -3m( | 6   | -6  | 6/m | 622  | 6m m  | -62m | -62m | 6/mm    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | DOI          | 3     | 2     | 6     | 2     | 2       | 6      | 1        | 1    | 3     | 2    | 6    | 6    | 1   | 2   | 2   | 2    | 1     | 2    | 2    | 2       |
| DH         3         6         6         6         -3         6         6         72         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""> <th12< th=""></th12<></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | OkD          | 3     | 6     | 6     | 6     | 3       | 6      | 3        | 6    | 3     | 6    | 6    | 6    | 6   | 3   | 6   | 6    | 6     | 3    | 6    | 6       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Okl          | 3     | 6     | 6     | 6     | 6       | -3     | 6        | 6    | 6     | 12   | 12   | 12   | 6   | 6   | 12  | 12   | 6     | 12   | 12   | 12      |
| Indi         33         6         6         6         12         12         16         6         12         12         6         6         12         12         6         6         12         12         6         6         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""> <th12< th=""></th12<></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | h00          | 3     | 6     | 6     | 6     | 3       | 6      | 3        | 6    | 3     | 6    | 6    | 6    | 6   | 3   | 6   | 6    | 6     | 3    | 6    | 6       |
| hk0         3         6         6         6         7-3         6         6         0         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | hOl          | 3     | 6     | 6     | 6     | 6       | -3     | 3        | 6    | 6     | 6    | 12   | 12   | 6   | 6   | 12  | 12   | 6     | 6    | 12   | 12      |
| hel         3         6         6         6         6         6         7         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         13         6         6         6         6         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""> <th12< th=""></th12<></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | hkD          | 3     | 6     | 6     | 6     | 6       | -3     | 6        | 6    | 6     | 12   | 12   | 12   | 6   | 3   | 6   | 12   | 12    | 6    | 6    | 12      |
| Dirk         3         b         b         b         b         b         b         3         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""> <th12< th=""></th12<></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | hkl          | 3     | 6     | 6     | 6     | 6       | 6      | 6        | 6    | 6     | 12   | 12   | 12   | 6   | 6   | 12  | 12   | 12    | 12   | 12   | 24      |
| h/h         3         6         6         6         6         3         3         3         0         0         0         0         3         3         0         0         0         0         3         3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Ukk          | 3     | 6     | 6     | 8     | 6       | 6      | 6        | 6    | 3     | 12   | 12   | 6    | 6   | 8   | 12  | 12   | 6     | 12   | 12   | 12      |
| nn         o         o         o         o         o         o         o         o         o         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | nh0          | 3     | 6     | 6     | 3     | 3       | 6      | 6        | 3    | 3     | 10   | 6    | 6    | 6   | 3   | 5   | 10   | 6     | 10   | 3    | 6<br>10 |
| Instri         3         6         6         6         6         6         3         12         12         6         6         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | nhi          | 3     | 0     | 0     | 6     | 0       | 0      | 0        | 3    | 3     | 12   | 10   | 0    | 0   | 0   | 12  | 12   | 6     | 12   | 12   | 12      |
| Image         0         0         0         0         0         0         3         12         12         10         0         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 <th12< th=""> <th12< th=""></th12<></th12<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | nun          | 3     | 6     | 0     | 6     | 6       | 6      | 6        | 6    | 3     | 12   | 12   | 6    | 0   | 6   | 12  | 12   | 12    | 12   | 12   | 24      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | hkh          | 3     | 6     | 6     | 6     | 6       | 6      | 6        | 6    | 3     | 12   | 12   | 6    | 6   | 6   | 12  | 12   | 12    | 12   | 12   | 24      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | hhh          | 1     | 6     | 2     | 6     | 6       | 2      | 6        | 6    | 1     | 12   | 12   | 2    | 6   | 6   | 12  | 12   | 6     | 12   | 6    | 12      |























| Bravais            | <b>ン月 )妖</b><br>格子における消滅則            | (月)                                  |
|--------------------|--------------------------------------|--------------------------------------|
| Bravais<br>lattice | Allowed reflections                  | Extinct (forbidden) reflections      |
| Р                  | All                                  | None                                 |
| Ι                  | h+k+l=2n                             | h+k+l=2n+1                           |
| F                  | $h+k=2n$ and $k+l=2n$ and $h+l=2n^a$ | h+k=2n+1 or $k+l=2n+1$ or $h+l=2n+1$ |
| А                  | k+l=2n                               | k+l=2n+1                             |
| В                  | h+l=2n                               | h+l=2n+1                             |
| С                  | h+k=2n                               | h+k=2n+1                             |
| R <sup>b</sup>     | -h+k+l=3n(hexagonal basis)           | -h+k+l=3n+1 and $3n+2$               |
| R°                 | h-k+l=3n(hexagonal basis)            | h-k+l=3n+1 and $3n+2$                |

a: h, k, lが 全て偶数か、全て奇数」でもよし

b:標準設定 c:逆設定

消滅側は空間群の決定に用いられる!

| 演習                                                        |
|-----------------------------------------------------------|
| 問 体心格子では、h+k+l=2n+1(nは整数)となるような<br>(hkl)反射の強度がゼロになることを示せ。 |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |
|                                                           |

| 演習                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 問 モリブデン金属の結晶をX線回折法で調べたところ、2θ=40.5°、58.60°、73.64°、<br>87.62°、101.38°、116.00°、132.6°などの反射が観測された。ただし、X線の波長<br>は1.5405 。この結晶は立方晶系であると仮定して、各ピークに指数をつけ、<br>Bravais格子の型と格子定数を求めよ。 |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |



| 映進面            | 面の反射則       | l               |                      | らせん                                                               | ,軸の反射       | 則               |                   |
|----------------|-------------|-----------------|----------------------|-------------------------------------------------------------------|-------------|-----------------|-------------------|
| Glide<br>plane | Orientation | Reflection type | Allowed condition    | Screw axis                                                        | Orientation | Reflection type | Allowed condition |
|                | (010)       | h0l             | h=2n                 | 2.4                                                               | [100]       | h00             | h=2n              |
| a              | (001)       | hk0             | h=2n                 | 21, 42                                                            | [010]       | 0k0             | k=2n              |
|                | (110)       | hhl             | h=2n                 | 2 <sub>1</sub> , 4 <sub>2</sub> , 6 <sub>1</sub>                  | [001]       | 00/             | l=2n              |
| L.             | (100)       | 0kl             | k=2n                 | 41, 43                                                            | [100]       | h00             | h=4n              |
| b              | (001)       | hk0             | k=2n                 |                                                                   | [010]       | 0k0             | k=4n              |
|                | (100)       | 0kl             | <i>l</i> =2 <i>n</i> |                                                                   | [001]       | 00/             | l=4n              |
| c              | (010)       | h0l             | <i>l</i> =2 <i>n</i> | 3 <sub>1</sub> , 3 <sub>2</sub> , 6 <sub>2</sub> , 6 <sub>4</sub> | [001]       | 00/             | l=3n              |
|                | (110)       | hhl             | <i>l</i> =2 <i>n</i> | 6 <sub>1</sub> , 6 <sub>5</sub>                                   | [001]       | 00/             | l=6n              |
|                | (110)       | hhl             | l=2n $l=2n$ $l=2n$   | _                                                                 |             |                 |                   |
|                | (100)       | 0kl             | k+l=4n(k,l=2n)       |                                                                   |             |                 |                   |
| d              | (010)       | h0l             | h+l=4n(h,l=2n)       |                                                                   |             |                 |                   |
| u              | (001)       | hk0             | h+k=4n(h,k=2n)       |                                                                   |             |                 |                   |
|                | (110)       | hhl             | 2h+l=4n(l=2n)        |                                                                   |             |                 |                   |
|                | (100)       | 0kl             | k+l=2n               |                                                                   |             |                 |                   |
|                | (010)       | h0l             | h+l=2n               |                                                                   |             |                 |                   |
| n              | (001)       | hk0             | h+k=2n               |                                                                   |             |                 |                   |

| 空間群<br>(単斜晶系)                                                                                                                   |                                                                          | 同じ消滅則を与える空間群型型                      |                                     |                                                                       |                                         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| P2 (3)<br>P2 <sub>1</sub> (4)<br>Pc (7)<br>Pa (7)<br>P1 (7)<br>P21/c (14)<br>P2 <sub>1</sub> /a (14)<br>P2 <sub>1</sub> /n (14) | Pm (6)<br>P2 <sub>1</sub> /m (11)<br>P2/c (13)<br>P2/a (13)<br>P2/n (13) | P2/m (10)                           |                                     |                                                                       | P*<br>P2 <sub>1</sub><br>Pc<br>Pa<br>Pn |  |  |  |  |  |
| C2 ( 5)<br>C2 <sub>1</sub> /a (12)<br>A2 ( 5)                                                                                   | C2 <sub>1</sub> (5)<br>A2 <sub>1</sub> (5)                               | Cm (8)<br>Am (8)                    | Ca (8)<br>Ac (8)                    | C2/m (12)<br>A2/m (12)                                                | C*<br>A*                                |  |  |  |  |  |
| I2 ( 5)                                                                                                                         | $A2_1/c$ (12)<br>$I2_1$ (5)<br>$I2_1/n$ (12)                             | Im (8)                              | In (8)                              | I2/m (12)                                                             | I*                                      |  |  |  |  |  |
| Aa ( 9)<br>Cc ( 9)<br>Ic ( 9)                                                                                                   | An (9)<br>Cn (9)<br>Ia (9)                                               | A2/a (15)<br>C2/c (15)<br>I2/c (15) | A2/n (15)<br>C2/n (15)<br>I2/a (15) | $\begin{array}{c} A2_1/n(15) \\ C2_1/n(15) \\ I2_1/c(15) \end{array}$ | Aa<br>Cc<br>Ic                          |  |  |  |  |  |

| 空間群<br>(斜方晶系)                        | 同じ消滅則の空<br>間群          | 格子軸               | が変換された            | はれた空間群 |      |  |  |
|--------------------------------------|------------------------|-------------------|-------------------|--------|------|--|--|
| abc                                  | abc                    | bca               | bac               | acb    |      |  |  |
| P222 (16)                            | Pmm2 (25)<br>Pmmm (47) |                   |                   |        | P*** |  |  |
| $P222_{1}(17)$<br>P2 2 2 (18)        |                        |                   |                   |        |      |  |  |
| $P2_12_12_1(18)$<br>$P2_12_12_1(19)$ |                        |                   |                   |        |      |  |  |
| Pnnn (48)                            |                        |                   |                   |        |      |  |  |
| Pccm (49)                            | Pcc2 (27)              |                   |                   |        | Pcc* |  |  |
| Pban(50)<br>Pmma (51)                | P2.ma (26)             | Pmc2              |                   |        | P**a |  |  |
|                                      | Pm2a (28)              | 1                 |                   | Pma2   |      |  |  |
| Pnna (52)                            |                        |                   |                   |        |      |  |  |
| Pmna (53)<br>Paga (54)               | P2na (30)              | Pnc2              |                   |        | P*na |  |  |
| Pbam (55)                            | Pba2 (32)              |                   |                   |        | Pba* |  |  |
| Pccn (56)                            |                        |                   |                   |        |      |  |  |
| Pbcm (57)                            | Pbc2 <sub>1</sub> (29) |                   | Pca2 <sub>1</sub> |        | Pbc* |  |  |
| Pnnm (58)                            | Pnn2 (34)              |                   |                   |        | Pnn* |  |  |
| Pmmn (59)<br>Phon (60)               | $P2_1 mn (31)$         | Pmn2 <sub>1</sub> |                   |        | P**n |  |  |
| PDCII (60)<br>Phea (61)              |                        |                   |                   |        |      |  |  |
| Pnma (62)                            | Pn2.a (33)             |                   |                   | Pna2.  | Pn*a |  |  |

| 空間群<br>(斜方晶系)                                                                            | 同じ消滅則の<br>空間群                                                                                                                   |      | 格子軸が変換       | 奥された空間 | れた空間群                |                                               |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------|----------------------|-----------------------------------------------|--|--|
| abc                                                                                      | abc                                                                                                                             | bca  | cab          | acb    | cba                  |                                               |  |  |
| C222 (21)<br>C2221 (20)<br>Cmma (67)<br>Cmcm (63)<br>Cmca (64)<br>Cccm (66)<br>Ccca (68) | Cmm2 (35)<br>Cm2m (38)<br>C2mm (38)<br>Cmmm (65)<br>Cm2a (39)<br>C2mb (39)<br>Cmc21 (36)<br>C2cm (40)<br>C2cb (41)<br>Ccc2 (37) | Amm2 | Amm2<br>Abm2 |        | Abm2<br>Ama2<br>Aba2 | C***<br>C**21<br>C**a<br>C*c*<br>C*ca<br>Ccc* |  |  |
| F222 (22)<br>Fdd2 (43)<br>Fddd (70)<br>I222 (23)<br>Ibam (72)<br>Imma (74)<br>Ibca (73)  | Fmm2 (42)<br>Fmmm (69)<br>12,2,2,1 (24)<br>Imm2 (44)<br>Immm (71)<br>Iba2 (45)<br>Im2a (46)<br>12mb (46)                        | Ima2 |              | Ima2   |                      | F***<br>Fdd*<br>I***<br>Iba*<br>I**a          |  |  |

| 同じ消滅 | 測を与                                                  | える空                                   | 間群 -                                                 | -三方                                                 | 晶系           | と六方晶系 |
|------|------------------------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------------------|--------------|-------|
|      | 空間群<br>(三方晶系)                                        | 同じ消                                   | 「滅則を与える空」                                            | 間群                                                  | 型            |       |
|      | P6 (168)                                             | P3 (143)<br>P321 (150)<br>P-31m (162) | P-3 (147)<br>P3m1 (156)<br>P-3m1 (164)               | P312 (149)<br>P31m (157)                            | P***         |       |
|      | P6 <sub>2</sub> (171)                                | P31 (144)<br>P312 <sub>1</sub> (152)  | P32 (145)<br>P32 <sub>1</sub> 2 (153)                | P3 <sub>1</sub> 12 (151)<br>P322 <sub>1</sub> (154) | P62**        |       |
|      | P6 <sub>3</sub> mc (186)<br>P6 <sub>3</sub> cm (185) | P31c (159)<br>P3c1 (158)              | P-31c (163)<br>P-3c1 (165)                           |                                                     | P**c<br>P*c* |       |
|      | R3 (146)                                             | R-3 (148)<br>R-3m (166)               | R32 (155)                                            | R3m (160)                                           | R*           |       |
|      | R3c (161)                                            | R-3c (167)                            | <u> </u>                                             |                                                     | R*c          | ]     |
|      | 空間群<br>(六方晶系)                                        | 同じ対                                   | 肖滅則を与える空                                             | 間群                                                  | 型            |       |
|      | P6 (168)                                             | P-6 (174)<br>P6mm (183)<br>P6/mmm     | P6/m (175)<br>P-6m2 (187)                            | P622 (177)<br>P-62m (189)                           | P***         |       |
|      | P6 <sub>1</sub> (169)                                | (191)                                 | P6 <sub>1</sub> 22 (178)                             | P6 <sub>5</sub> 22 (179)                            | P61**        |       |
|      | P6 <sub>2</sub> (171)<br>P6, (173)                   | $P6_5(170)$<br>$P6_5(172)$            | P6 <sub>2</sub> 22 (180)<br>P6 <sub>2</sub> 22 (182) | P6 <sub>4</sub> 22 (181)                            | P62**        |       |
|      | P6cc (184)                                           | $P6_3/m(176)$                         | 10322 (102)                                          |                                                     | P*cc         |       |
|      | P6 <sub>3</sub> cm (185)                             | P6/mcc (192)                          | P6 <sub>3</sub> /mcm (193)                           |                                                     | P*c*         |       |
|      | $P6_{3}mc(186)$                                      | P-6c2 (188)<br>P-62c (190)            | P63/mmc<br>(194)                                     |                                                     | P**c         |       |
|      |                                                      | -                                     |                                                      |                                                     | ·            | '     |

| 同じ消滅則を与        | 空間群<br>(正方晶系)                                                                                                                                                                                   | 同じ                                                                                                                                                                             | 消滅則を与える空                                                                       | 間群                                                  | 型                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|
| える空間群<br>一正方晶系 | P4 (75)<br>P4 <sub>1</sub> (76)<br>P4 <sub>2</sub> (77)<br>P4/n (85)<br>P4 <sub>2</sub> /n (86)<br>P4 <sub>2</sub> ,2 (90)<br>P4 <sub>2</sub> ,2 (92)                                           | P-4 (81)<br>P4mm (99)<br>P4/mmm (123)<br>P4 <sub>3</sub> (78)<br>P4 <sub>2</sub> /m (84)<br>P4/mmm (129)<br>P-42 <sub>1</sub> m (113)<br>P4 <sub>3</sub> 2 <sub>1</sub> 2 (96) | P4/m (83)<br>P-42m (111)<br>P4 <sub>1</sub> 22 (91)<br>P4 <sub>2</sub> 22 (93) | P422 (89)<br>P-4m2 (115)<br>P4 <sub>3</sub> 22 (95) | P4/***<br>P41/***<br>P42/***<br>P4/n**<br>P*21*<br>P*21*<br>P*22 |
|                | P4 <sub>2</sub> 2 <sub>1</sub> 2 (94)<br>P4bm (100)<br>P4 <sub>2</sub> cm (101)<br>P4 <sub>2</sub> cm (102)<br>P4cc (103)<br>P4nc (104)<br>P4 <sub>2</sub> mc (105)<br>P4 <sub>2</sub> bc (106) | P-4b2 (117)<br>P-4c2 (116)<br>P-4n2 (118)<br>P4/mcc (124)<br>P4/mcc (128)<br>P-42c (112)<br>P4 <sub>2</sub> /mbc (135)                                                         | P4/mbm (127)<br>P4_/mcm (132)<br>P4_/mnm (136)<br>P4_/mmc (131)                |                                                     | P*b*<br>P*c*<br>P*n*<br>P*cc<br>P*nc<br>P**c<br>P*bc             |
|                | P-42 <sub>1</sub> c (114)<br>P4/nbm (125)<br>P4/ncc (130)<br>P4 <sub>2</sub> /nbc (133)<br>P4 <sub>2</sub> /nbc (137)<br>P4 <sub>2</sub> /nmc (137)<br>P4 <sub>2</sub> /nmc (138)               |                                                                                                                                                                                |                                                                                |                                                     |                                                                  |
|                | 14 (79)<br>14,(80)<br>14,(a (88)<br>14cm (108)<br>14,md (109)<br>14,cd (110)<br>14,(and (141)<br>14,(acd (142)                                                                                  | I-4 (82)<br>I4mm (107)<br>I4/mmm (139)<br>I4 <sub>1</sub> 22 (98)<br>I-4c2 (120)<br>I-42d (122)                                                                                | I4/m (87)<br>I-4m2 (119)<br>I4/mcm (140)                                       | 1422 (97)<br>I-42m (121)                            | I***<br>I4I**<br>I*c*<br>I**d                                    |

| 空間群<br>(立方晶系)                                                                                                           |                                                                                               | 同じ消滅則を     | 与える空間群      |             | 型                                                                |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|-------------|-------------|------------------------------------------------------------------|
| P23 (195)<br>P2 <sub>1</sub> 3 (198)<br>Pn3 (201)<br>Pa3 (205)<br>P4 <sub>1</sub> 32 (213)<br>P-43n (218)<br>Pn3n (222) | Pm3 (200)<br>P4 <sub>2</sub> 32 (208)<br>Pn3m (224)<br>P4 <sub>3</sub> 32 (212)<br>Pm3n (223) | P432 (207) | P-43m(215)  | Pm3m (221)  | P*3*<br>P4 <sub>2</sub> 3*<br>Pn3*<br>P4 <sub>1</sub> 32<br>P*3n |
| F23 (196)<br>Fd3 (203)<br>F4 <sub>1</sub> 32 (210)<br>F-43c (219)<br>Fd3c (228)                                         | Fm3 (202)<br>Fd3m (227)<br>Fm3c (226)                                                         | F432 (209) | F-43m (216) | Fm3m (225)  | F*3*<br>Fd3*<br>F*3c                                             |
| I23 (197)<br>Ia3 (206)<br>I4 <sub>1</sub> 32 (214)<br>I-43d (220)<br>Ia3d (230)                                         | I2 <sub>1</sub> 3 (199)<br>Im3m (229)                                                         | Im3 (204)  | 1432 (211)  | I-43m (217) | I*3*                                                             |



















































## データプロセッシング

## 1. ピークサーチ

- ●一般的には、自動サーチ(ソフトウェア) 質のよいデータでないとうまく行かない
- ●BGの除去、K<sub>α2</sub>の除去、スムージング処理、などの処 理が必要
- 2. プロファイルフィッティング 得られる情報(限られた範囲内のピークについて): ピーク位置、積分ピーク強度、半値幅、など

## 3. 全パターン分解 パターン全体をプロファイルフィッティングする 未知構造の決定に用いる























|        |                                                     |                               |                                                        |                                                     |                               |                                            | 7                                                   | 相              | の                                                      | 同                             | ۲<br>۲   | Ξ                        |                                                                                 |
|--------|-----------------------------------------------------|-------------------------------|--------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------------------------|-----------------------------------------------------|----------------|--------------------------------------------------------|-------------------------------|----------|--------------------------|---------------------------------------------------------------------------------|
| 粉      | 末回掛                                                 | f۱                            | ター                                                     | ンは国                                                 | 国有                            | <mark></mark> ም"F                          | inger                                               | prin           | t"をも                                                   | · در                          | -        | 主に、                      | ピーク位置とピーク強度                                                                     |
| 結<br>P | 晶デー<br>DFフ:                                         | -タ・<br>アイ                     | ベー;<br>ル                                               | ス                                                   |                               |                                            |                                                     |                |                                                        |                               |          | 試*                       | りの同定に用いられる                                                                      |
| ~      | Powd                                                | er I                          | Diffra                                                 | action                                              | File                          | es (Pl                                     | DF) b                                               | y In           | terna                                                  | tional                        | Ce       | ntre fo                  | or Diffraction Data (ICDD)                                                      |
| 0      | 48-1152<br>Li0.6 VI.67<br>Lithium Var               | 03.67<br>natium (             | 1 H2 O<br>Duide Hydr                                   | 180                                                 |                               |                                            |                                                     |                |                                                        |                               | Qualit   | ty: Indexed              | ①ファイル番号<br>②物質の一般的情報                                                            |
| 3      | Rad:CoKal<br>Cutoff:<br>Ref:Whittin                 | gham, 1                       | Lambia:1.5<br>Int: Diffina<br>et., SUNY a              | H056 1<br>conster<br>t Binghomto                    | Filtur:<br>Usor:<br>n, Materi | lsResearch                                 | h Center, NY                                        | .USA.C         | dap:Di<br>Ityrayil, T.,                                | Traciometer<br>Zavalij, P., V | Vhitting | hors, M., ()             | <ul><li>③測定条件</li><li>④結晶学的データ</li></ul>                                        |
| ۲      | SyscTetrage<br>a:3:7047±0<br>m<br>Ref2              | aul<br>.0003                  | $\frac{h}{\beta}$                                      |                                                     |                               | sci.34/mm<br>::15.804±0<br>r               | 1.002                                               | Z.2            |                                                        |                               | ,        |                          | 格子定数など<br>⑤物質の性質、追加情報                                                           |
| 6      | Dx:2.53<br>01<br>Ref3                               |                               | Dec:                                                   | 2.541                                               |                               | SFOM: F                                    | 30-46.5(0.0                                         | 161,40)<br>Sga | Volume                                                 | (CD :216.91<br>2              | 6        |                          | 60色<br>⑦コメント                                                                    |
| ଚ      | Callor:<br>Prepared by<br>for 3 days a              | hydrod<br>100 C               | iermal tres<br>Patient tal                             | timent of test<br>ken at 23(1)                      | a methyla<br>C.               | nmanium                                    | hydroside, v                                        | undian         | penécside 1                                            | nd'(Li O H);                  | cidified | to pH 2-5                |                                                                                 |
|        | 32 seflection<br>2 #<br>11.2026<br>22.4967          | n in pat<br>Int.<br>100<br>19 | b k 1<br>0 0 2<br>0 0 4                                | 2.8<br>50.5721<br>54.6558                           | 1m.<br>8<br>3                 | h k 1<br>0 2 2<br>0 2 4                    | 2.0<br>72.0262<br>73.1843                           | 1nt.<br>4<br>2 | h k 1<br>2 2 0<br>2 2 2                                | 2.0<br>83.7228<br>84.1343     | Int.     | h k 1<br>0 1 13<br>0 3 5 |                                                                                 |
| ۱      | 24.6618<br>29.4652<br>33.9955<br>34.2095<br>36.0710 | 9<br>50<br>1<br>14<br>1       | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | 55,7443<br>58,0569<br>58,3367<br>58,3367<br>58,4543 | 2<br>3<br>13<br>13<br>4       | 1 2 1<br>0 1 9<br>1 2 3<br>0 0 10<br>1 1 8 | 76.5173<br>77.4598<br>79.4091<br>79.6864<br>79.6864 | 1 2 4 4        | 2 2 4<br>0 3 1<br>1 2 9<br>0 3 3<br>0 2 10             |                               |          |                          | <ul> <li>◆PDF-2ファイル - 旧来の<br/>テキストベースのファイル</li> <li>◆PDF-4ファイル - 全ての</li> </ul> |
|        | 37.3772<br>47.3958<br>49.1443                       | 4<br>19<br>16                 | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | 63.3383<br>69.4008<br>70.4377                       | 3<br>10<br>7                  | 1 2 5<br>1 1 10<br>1 2 7                   | 81.7407<br>82.1813<br>83.3159                       | 2<br>2<br>1    | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ |                               |          |                          | 項目について検索可能な                                                                     |

|                                                  | 結晶データイ                                                             | ベース                                                                         |  |  |
|--------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| データベース                                           | 内容                                                                 | エントリー数                                                                      |  |  |
| ICDD                                             | PDF-2とPDF-4<br>実験値と計算値(ICSDより)<br>PDF-4 Organics<br>実験値と計算値(CSDより) | ~149,000<br>実験値:~99,000、計算値:~69,000<br>>137,000<br>実験値:~122,000、計算値:~25,000 |  |  |
| NIST-Crystal data<br>Pauling File                | 格子定数、対称性、文献<br>無機物質                                                | 構造:28,300<br>パターン:30,000<br>ダイヤグラム:8,000<br>物性データ:17,300                    |  |  |
| ICSD-Inorganic Crystal<br>Structure Data         | 原子座標を含む無機物質結<br>晶データ                                               | 64,734                                                                      |  |  |
| CSD-Cambridge<br>Structural Database             | 有機物・錯体の結晶データ                                                       | 257,162                                                                     |  |  |
| CRYSMET-Metals and<br>Alloys Database            | 合金、金属間化合物、鉱物<br>の結晶データ                                             | ~70,000                                                                     |  |  |
| PDB-Protein Data Bank;<br>Nucleic Acids Database | タンパク質データ<br>オリゴヌクレオチドと核酸                                           | 18,566<br>1,904                                                             |  |  |
| IZA-Zeolite database                             | 全ゼオライト構造                                                           | 136タイプ                                                                      |  |  |
| Mineralogy Database                              | 鉱物関係                                                               | 4,255                                                                       |  |  |

| 相の同定と定性分析                                                |
|----------------------------------------------------------|
| 手動による同定(PDFファイル)                                         |
| 検索インデックス<br>2番目の最強ピークのd値と相の名前が最強ピークのd値毎<br>にソート          |
| アルファベットインデックス<br>正確なあるいはほぼ妥当な相名がわかっている場合                 |
| 自動による同定(種々の検索ソフトウェア)                                     |
| 検索パラメータ – Bragg反射の数(強度リストも用いられる)                         |
| ナーダベース中にのる最強反射の数<br>許容範囲(2θ範囲、d値、など)                     |
| 検索範囲を絞る有力な要因                                             |
| Inclusive OR, Inclusive AND, Exclusive OR, Exclusive AND |
|                                                          |



























| 線形最小自乗による相                                                                                            | 各子定数の精密化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       | * 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\int_{a}^{b^{2}} a \cdot a \cdot a + k^{2} b \cdot b + l^{2} c \cdot c + 2hka \cdot b$               | $*+2lh\boldsymbol{c}*\cdot\boldsymbol{a}*+2kl\boldsymbol{b}*\cdot\boldsymbol{c}*=\boldsymbol{d}^{*}hk_{l}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $h^{2}a^{*2} + k^{2}b^{*2} + l^{2}c^{*2} + 2hka^{*}b^{*}\cos\gamma^{*} + 2lhc^{*}a^{*}\cos\gamma^{*}$ | $\beta^* + 2klb^*c^*\cos\alpha^* = \frac{4\sin^2\theta}{\lambda^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{13}lh + 2S_{23}kl = \frac{44}{2}$                | $\frac{\sin^2 \theta}{\lambda^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\therefore S_{11} = a^{*2} = b^2 c^2 \sin^2 \gamma / V^2$                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $S_{22} = h^{*2} = a^2 c^2 \sin^2 \beta / V^2$                                                        | $h_1^2  k_1^2  l_1^2  2h_1k_1  2h_1l_1  2k_1l_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $S_{22} = c^{*2} - a^2 b^2 \sin^2 \alpha / V^2$                                                       | $A = \begin{vmatrix} n_2^{-} & k_2^{-} & l_2^{-} & 2n_2k_2 & 2n_2l_2 & 2k_3l_3 \\ n_1 & n_2 $ |
| $S_{12} = a^* b^* \cos \gamma^* = abc^2 (\cos \alpha \cos \beta - \cos \gamma)/V^2$                   | $\begin{pmatrix} \dots & \dots & \dots & \dots & \dots \\ h_n^2 & k_n^2 & l_n^2 & 2h_nk_n & 2h_nl_n & 2k_nl_n \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $S_{13} = a^* c^* \cos \beta^* = ab^2 c (\cos \alpha \cos \gamma - \cos \beta) / V^2$                 | $\left(S_{11}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $S_{23} = b^* c^* \cos \alpha^* = a^2 b c (\cos \beta \cos \gamma - \cos \alpha) / V^2$               | $\begin{pmatrix} 4\sin^2\theta_1/\lambda \\ 4\sin^2\theta_1/\lambda \end{pmatrix} = \begin{cases} S_{22} \\ S_{33} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                       | $\mathbf{y} = \begin{bmatrix} 4\sin^2\theta_2 / \lambda \\ \cdots \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} 533 \\ S_{12} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathbf{x} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{y}$              | $\left(4\sin^2\theta_n/\lambda\right) \qquad S_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                       | (323)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |























| Rietan2000に用いられているパラメータ                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 回折プロファイル関数:                                                                                                                                                                                                                                                                               |
| $f_i(2\theta_i) = sS_R(\theta_i)A(\theta_i)D(\theta_i)\sum M_K  F_K ^2 P_K L(\theta_K)\Phi(\Delta 2\theta_{iK}) + y_b(2\theta_i)$                                                                                                                                                         |
| ●表面荒さ補正因子 $S_{ m R}(	heta_i)$ $K$                                                                                                                                                                                                                                                         |
| Suortti model: $S_R(\theta_i) = 1 - p \exp(-q) + p \exp(-q/\sin \theta_i)$                                                                                                                                                                                                                |
| Sparks model: $S_R(\theta_i) = 1 - t(\theta_i - \pi/2)$<br>Conbined model: $S_R(\theta_i) = r_s[1 - p\exp(-q) + p\exp(-q/\sin\theta_i)] + (1 - r_s)[t(\theta_i - \pi/2)]$                                                                                                                 |
| Pitschke model : $S_R(\theta_i) = 1 - pq(1-q) - \frac{pq(1-q/\sin\theta_i)}{2}$                                                                                                                                                                                                           |
| $p,q,t,r_s$ :精密化パラメータ                                                                                                                                                                                                                                                                     |
| ●吸収因子 $A(\theta_i)$ :Bragg-Belentano系では一定と見なせる                                                                                                                                                                                                                                            |
| ●選択配向間数P <sub>K</sub>                                                                                                                                                                                                                                                                     |
| $P_{K} = \frac{1}{m_{K}} \sum_{j=1}^{m_{K}} (r^{2} \cos^{2} \alpha_{j} + r^{-1} \sin^{2} \alpha_{j})^{-3/2}$                                                                                                                                                                              |
| $\alpha_j$ : 選択配向ベクトル $h_{\mu}a^{*+k}b^{*+l}c^{*}$ と反射 $j$ の逆格子ベクトル $h_{\mu}a^{*+k}b^{*+l}c^{*}$ とのなす鋭角<br>(選択配向ベクトルは板状結晶では劈開面に垂直であり、針状結晶では伸長方向に等しい)<br>$\Sigma_j: K$ と等価な全反射についての和を表し、立方晶系あるいは選択配向ベクトルが対称軸と一致しない時にだけ、分母の $m_k$ とともに必要となる<br>March-Dollase 関数は板状、針状のいずれの形態をもつ結晶に対しても通用する. |









| PatViewによる指数付                                                                                                                                                                                                          | け                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| ITO: hexagonal, a= 5.0430Å, c=4.0124Å<br>TREOR: tetragonal, a=20.175077Å,c=4.012879Å<br>DICVOL: orthorhombic, a=17.46756Å, b=5.04408Å, c=4.0156                                                                        | 3つ <mark>の結果が合わない?</mark><br>2Å                     |
| 2 $\theta$ =44.235と2 $\theta$ =74.256のピークを除いて実行<br>ITO: hexagonal, a=5.0430Å, c=4.0124Å<br>TREOR: hexagonal, a=5.043774Å, c=4.012996Å<br>DICVOL: hexagonal, a=5.04379Å, c=4.01300Å                                     | 3つの結果が合った!                                          |
| Cellのアウトとプット<br>a= 5.0471 c= 4.0132 Vol= 89 R=73% R10=83% S.G.=P6<br>a= 5.0470 c= 4.0151 Vol= 89 R=73% R10=83% S.G.=P6<br>                                                                                             |                                                     |
| P6には消滅則がない<br>同じタイプの空間群:<br>Hexagonal: P6(168), P-6(174), P6/m(175), P622(177), P6mm(183), P-6<br>P6/mmm(191)<br>Trigonal: P3(143), P-3(147), P312(149), P321(150), P3m1(156),P31m(1:<br>同じタイプの空間群の場合、一般に最も対称性の高いものを選ぶ | m2(187), P-62m(189),<br>57), P-31m(162), P-3m1(164) |
| P6/mmm(191)                                                                                                                                                                                                            |                                                     |









|              | 最終結果                                     |
|--------------|------------------------------------------|
| CIFファイルの一部抜粋 |                                          |
| #            |                                          |
|              | 0.34(1) La<br>-0.16(2) Ni<br>-0.16(2) Sa |
| #            |                                          |

## おわりに

本学の機器分析センターで平行ビーム光学系を装備した装置が 数年前に導入され稼動している。この装置で収集したデータを用 いたリーベルド解析において、解析結果の劇的な改善も確認さ れている。ご興味のある方は是非とも試みられることをお勧めす る。

CRietan2000システムは我々の研究室のホームページで公開している。プログラムは無償でダウンロードできるし、簡単な解析マニュアルも公開している。使用していただいた際には、ご感想やご意見を下さい。

佐藤・戸田研究室ホームページ http://mukiken.eng.niigata-u.ac.jp